Meeting at CHI'2016, scheduled to be at:
Tuesday, May 10, 4:30-5:50pm PST in Room 112.

Usability of Programming Languages
Special Interest Group (SIG) meeting at CHI'2016

Brad A. Myers

Human-Comp. Interaction Inst.
Carnegie Mellon University
bam@cs.cmu.edu

Margaret Burnett

School of EECS

Oregon State University
burnett@eecs.oregonstate.edu

Andreas Stefik

Computer Science

University of Nevada, Las Vegas
stefika@gmail.com

Franklyn Turbak

Computer Science Department
Wellesley College
fturbak@wellesley.edu

Philip Wadler
School of Informatics

Stefan Hanenberg
Dept. of CS and Business IS
Univ. of Duisburg-Essen, Germany University of Edinburgh, UK
stefan.hanenberg@uni-due.de wadler@inf.ed.ac.uk

Antti-Juhani Kaijanaho
Department of Math. Inf. Tech.
University of Jyvaskyla, Finland
antti-juhani.kaijanaho@jyu.fi

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

CHI'16 Extended Abstracts, May 07-12, 2016, San Jose, CA, USA

ACM 978-1-4503-4082-3/16/05.
http://dx.doi.org/10.1145/2851581.2886434

Abstract

Programming languages form the interface between
programmers (the users) and the computation that
they desire the computer to execute. Although studies
exist for some aspects of programming language design
(such as conditionals), other aspects have received
little or no human factors evaluations. Designers thus
have little they can rely on if they want to make new
languages highly usable, and users cannot easily chose
a language based on usability criteria. This SIG will
bring together researchers and practitioners interested
in increasing the depth and breadth of studies on the
usability of programming languages, and ultimately in
improving the usability of future languages.

Author Keywords

Programming language usability; API usability; end-
user software engineering (EUSE); empirical studies of
programmers; psychology of programming.

ACM Classification Keywords
H.1.2 User/Machine Systems: Software psychology.
D.3.3 Language Constructs and Features.

Introduction

The empirical studies of programmers (ESP), which was
also called the psychology of programming, dates back
to before the CHI conference was formed (e.g., [20]),
and yet programming is still a difficult human task. A
human-centered definition says that “Programming is
the process of transforming a mental plan into one that

bam
Text Box
 Meeting at CHI'2016, scheduled to be at:
Tuesday, May 10, 4:30-5:50pm PST in Room 112.

select the objects that match -

<] D

select

objects matc
?
?
?

Figure 1: An early study that
showed that non-
programmers have more
difficulty understanding and
constructing queries using
textual “and”, “or” and “not”
compared to using a tabular
representation [15].

is compatible with the computer” [11]. The
programming language is the way that this
transformation is expressed, and the smaller the
transformation, the easier the programming task is
likely to be [8].

However, few human factors studies provide guidance
to language designers or users. In fact, a recent survey
found only 22 randomized controlled trials (RCTs) of
features of textual languages between the early 1950s
through 2012 [12]. Even modern changes (e.g., Java
with JDK 8 and 9, C++ 11 or 14, ECMAScript 6) have
not been vetted from a human factors point of view.

A group of researchers working at the intersection of
human-computer interaction (HCI), software
engineering (SE), and programming language design
(PL) are trying to provide appropriate methods for
evaluating languages, as well as valid, empirically
grounded evidence to guide design decisions. We hope
that this can alleviate “programming language wars”
[16] based purely on unsubstantiated claims. This
special interest group (SIG) meeting will bring together
these researchers, along with practitioners who have
insights into usability issues for particular domains and
situations, and programmers who want to evaluate
languages they might use.

Examples of Methods

Researchers and practitioners have adapted a variety of
conventional HCI methods for the study of
programming language usability, and also have created
entirely new methods. Examples of conventional
methods include using randomized controlled trials
(RCTs) [12] and longitudinal tracking of programmer
behavior [1] to provide insight into language usability.

Examples of new methods include the “natural
programming” elicitation method [13], which tries to
understand how people think about various concepts by
letting them generate their own expressions for them
(see Figure 1), and the “cognitive dimensions
framework” which provides vocabulary to help language
designers consider human-oriented programming
language attributes at design time [8], and has been
used to evaluate both textual and visual programming
languages.

Examples of Results

There were many early studies about features of
programming languages which made them difficult to
learn for novice programmers (see a summary [14]).
For example, a series of controlled experiments
examined the usability for novices of certain variants of
conditional statements [12]. Interpreting their results is
not straightforward due to their heterogeneity;
depending on the tasks given to study participants and
on the chosen outcome measures, each of the variants
was able to come on top. As discussed in detail in

Sec. 10.3.1 of [12], considering only logic errors in
programming as the outcome of interest, there is weak
evidence in favor of conditional statements with a
mandatory END token and repeating of the condition, a
syntax not in current use. Similarly, studies of
inheritance in object-oriented programming have
shown both positive [3] and negative [5] effects on
maintenance. Results from other studies showed that
non-programmers naturally used condition-action
expressions for events (such as “when Pacman hits a
wall, he stops”) [13] (see also Figure 1). Figure 2
highlights user-study-based results in Alice [4].

obj.move (forward, 1)

obj.move (forward, 1,
duration=3)

obj.move (forward, 1,
speed=4)

obj.move (forward, speed=2)

change of coordinate
system

obj.move (forward, 1,
AsSeenBy=camera)

different interpolation
function

obj.move (forward, 1,
style=abruptly)

e move forward 1metsr more.

Figure 2: User studies for
early versions of Alice that
used Python as a scripting
language found that Python's
optional keyword parameters
with defaults support a
controlled exposure to power
principle that facilitates the
incremental learning of
advanced Alice features by
novices [4]. The drag-and-
drop visual tile-based
interface of more modern
versions of Alice supports
this principle through drop-
down menus that include a
"more" option for additional
parameters.

There has been a long debate among programming
language designers as to whether static or dynamic
typing is more beneficial (for example, [2] argues
strongly for statically typed languages while [18]
argues the opposite), but only recently have scholars
begun gathering evidence in a series of replicable
experiments. Results under a variety of conditions
(e.g., with/without a development environment,
with/without documentation) show that developers are
more productive with static typing (see, e.g., [7]).

With regard to notation, programming languages vary
significantly in regard to the word/symbols chosen by
the designers, the structure of the code, and the
meaning of the notations. Recent studies have
investigated whether these differences in notation
matter. With novices, for example, results show that
even minor changes to what word is selected (e.g., the
word “repeat” instead of “for” in a loop, the use of “="
instead of "=="in an if statement) significantly impacts
novices [17].

With regard to concurrency control, several controlled
experiments indicated that software transactional
memory was superior with respect to programmer time
compared to locks [13, Sec. 10.3.2]. Another set of
studies addressed the concept of aspect-oriented
programming and generally found benefit only in the
more complex cases for specific tasks [9]. Anonymous
functions have also been studied (see Figure 3).

Topics and Goals for the SIG

In this special interest group (SIG) meeting, we focus
on usability aspects of the programming language itself
(rather than API usability, which was covered by a
previous CHI SIG [6]). We are interested in appropriate

techniques for measuring the usability of programming
languages that focus on various aspects of usability,
including the learnability, effectiveness, productivity,
and error proneness of the language. We are also
interested in techniques that go beyond lab studies, for
example to measure the longitudinal impact of
programming language design on professionals or
learners. For all studies, we are interested in the details
that make the results sound, valid and convincing.

For the language design itself, a first consideration is
the overall presentation of the language - the usability
of textual, visual, or hybrid languages. Also, the
usability of kinds of languages - imperative, object-
oriented, functional, constraint-based, etc. At a more
detailed level, we are interested in studies of the
usability of specific features, such as the syntax,
keyword choice, special characters, the choice of static
vs. dynamic typing, and advanced features such as
concurrency and exception handling.

For all of these measures, we are interested in how
they differ for different groups, such as learners vs.
end-user programmers vs. professionals, gender
differences, and the impacts on people with disabilities.
Another dimension is the usability differences based on
scale and size of the programs (from small to large to
ultra-large), or target domain (e.g., scientific,
concurrent, high-assurance, web programs, etc.).

One goal for this SIG is to provide a forum where HCI
researchers who study programming languages can
discuss appropriate methodologies and results. We
hope this will increase the standard of evidence for
studies of programming language design and codify
“best practices” for usability evaluations of languages

using namespace std;
float getSum(marketBasket mb)
{
float retval = 0;
function<void (item)> func =
[&] (item theItem) ({
retVal += theltem.price;
bi
mb.iterateOverItems (func);
return retVal;

Figure 3: One recent study
[19] found that anonymous
functions in C++ 11 compared
to iterators showed no benefits
for developers from students
through professionals. The
study also found the C++
syntax for this new feature
caused negative productivity
impacts, alternative syntax or
visual representations may
harbor benefits, such as the
graphical presentation in Snap!
[10].

Acknowledgements
This work was partially
funded by NSF grants IIS-
1314356, CNS-1423054,
CNS-1240957, 11S-1314384,
CNS-1440878 and DUE-
1226216, and by EPSRC
EP/K034413/1. Any opinions,
findings and conclusions or
recommendations expressed
in this material are those of
the authors and do not
necessarily reflect those of
any of the funders.

and language features. A second goal is make this
research more widely available by cataloging which
features and demographics have been investigated, and
which methods are most effective. We expect to also
highlight where future research is needed. We will
collect a bibliography of articles and blogs, along with
venues where such articles may appear (such as PPIG,
ICPC, VL/HCC, PLATEAU, OOPSLA, ICSE, CHASE, etc.)
at the website: programminglanguageusability.org.
Finally, we will discuss possibilities for a future forum
on this topic, such as a possible future CHI Workshop.

References

1. Altadmri, A., et al., “37 Million Compilations:
Investigating Novice Programming Mistakes in Large-
Scale Student Data,” in SIGCSE'2015. pp. 522-527.

2. Cardelli, L., “Type Systems,” in CRC Handbook of
Computer Science and Eng., 2nd Ed., 1997, CRC Press.

3. Cartwright, M., “An Empirical View of Inheritance.”
Inform Soft Technol 1998. 40(4): pp. 795-799.

4. Conway, M., et al. “Alice: Lessons Learned from Building
a 3d System for Novices,” in CHI'2000. pp. 486-493.

5. Daly, 1., et al., “Evaluating Inheritance Depth on the
Maintainability of Object-Oriented Software.” Empirical
Soft. Eng., 1996. 1(2): pp. 109-132.

6. Daughtry, J.M., et al., “Api Usability: Chi'2009 Special
Interest Group Meeting,” CHI'2009, Boston, MA. pp.
2771-2774. See www.apiusability.org.

7. Endrikat, S., et al., “"How Do Api Documentation and
Static Typing Affect Api Usability?,” ICSE 2014 632-642.

8. Green, T.R.G., “"Cognitive Dimensions of Notations,” in
People and Computers 1989, Cambridge Univ. Press.

9. Hanenberg, S. and Endrikat, S., “"Aspect-Orientation Is a
Rewarding Investment into Future Code Changes - as
Long as the Aspects Hardly Change.” Information &
Software Technology, 2013. 55(4): pp. 722-740.

10. Harvey, B. and Ménig, J., “Lambda in Blocks
Languages: Lessons Learned,” in IEEE Blocks and
Beyond Workshop, 2015. pp. 35-38.

11. Hoc, J.-M. and Nguyen-Xuan, A., “Language
Semantics, Mental Models and Analogy,” in Psychology
of Programming, 1990, Academic Press. pp. 139-156.

12. Kaijanaho, A.-]., Evidence-Based Programming
Language Design: A Philosophical and Methodological
Exploration. PhD Diss., Information Technology Faculty,
University of Jyvaskyla, 2015, Jyvaskyla, Finland. 222.

13. Myers, B.A., Pane, J.F., and Ko, A., “Natural
Programming Languages and Environments.” CACM,
2004. 47(9): pp. 47-52.

14. Pane, J.F. and Myers, B.A., Usability Issues in the
Design of Novice Programming Systems. Technical
Report, CMU-CS-96-132, August, 1996. Pittsburgh, PA.

15. Pane, J.F. and Myers, B.A., “Tabular and Textual
Methods for Selecting Objects from a Group,” in IEEE VL
2000. Seattle, WA. pp. 157-164.

16. Stefik, A., et al., “The Programming Language Wars:
Questions and Responsibilities for the Programming
Language Community,” Onward! 2014. pp. 283-299.

17. Stefik, A. and Siebert, S., “"An Empirical Investigation
into Programming Language Syntax.” Trans. Comput.
Educ., 2013. 13(4): Article 19.

18. Tratt, L. and Wuyts, R., “"Dynamically Typed
Languages.” IEEE Software, 2007. 24(5): pp. 28-30.

19. Uesbeck, P.M., et al., “An Empirical Study on the
Impact of C++ Lambdas and Programmer Experience,
ICSE 2016. To Appear.

20. Weinberg, G.M., The Psychology of Computer
Programming. 1971, New York: von Nostrand Reinhold.

”

